Indian Statistical Institute, Bangalore Centre. End-Semester Exam : Probability III(B3)

Instructor : Yogeshwaran D.

Date : May 2, 2017.

Max. points : 50.

Time Limit : 3 hours.

Give complete proofs. Please cite/quote appropriate results from class or assignments properly. You are also allowed to use results from other problems in the question paper. Unless mentioned all state spaces are finite.

- 1. For an HMC $\{X_n\}$, let $f_{i,j} = \mathbb{P}_i(T_j < \infty)$ and $r_{i,j} = \mathbb{E}_i(N_j)$ where T_j is the return time to j and N_j is the number of visits (including X_0) to j. Show that the following hold :
 - (a) For $m \ge 1$, $\mathbb{P}_j(N_j = m) = f_{j,j}^{m-1}(1 f_{j,j})$ (5)
 - (b) For $i \neq j$,

$$\mathbb{P}_i(N_j=0) = 1 - f_{i,j} ; \ \mathbb{P}_i(N_j=m) = f_{i,j} f_{j,j}^{m-1}(1 - f_{j,j}), \ m \ge 1.$$
 (5)

- 2. Let μ_j, ν_j be probability distributions on $E_j, j = 1, \ldots, d$. Define probability distributions on $E := \prod_{j=1}^d E_j$ as $\mu = \prod_j \mu_j, \nu = \prod_j \nu_j$. Show that $d_{TV}(\mu, \nu) \leq \sum_{j=1}^d d_{TV}(\mu_j, \nu_j)$. (5)
- 3. An HMC on E is transitive if $\forall x, y \in E$ there exists a bijection $\phi := \phi_{(x,y)} : E \to E$ such that

$$\phi(x) = y, \ P(z, w) = P(\phi(z), \phi(w)), \ \forall z, w \in E.$$

Let P be the transition matrix of a transitive HMC. Let \hat{P} be the transition matrix of the time-reversed Markov chain . Show the following.

- (a) Show that the uniform distribution is a stationary distribution for transitive HMC. (5)
- (b) Show that when the HMC is transitive, then time-reversed Markov chain is also transitive. (5)

(c) Let P, \hat{P} be as defined above and π , the uniform distribution on E. Let $x \in E$. Show that for all $t \ge 0$,

$$d_{TV}(P^t(x,.),\pi(.)) = d_{TV}(\hat{P}^t(x,.),\pi(.)).$$
 (10)

- 4. Let X_n be the reflected random walk on \mathbb{N} with transition probabilities as follows : For i > 0, the random walk goes from i to i + 1 with probability p, it goes from i to $(i - 1)^+$ with probability q and with probability r, it stays at i. Of course, $p, q, r \ge 0$ and p + q + r = 1. Show that $P(X_n \ge c(p - q)n) \to 1$ for any c < 1. (10)
- 5. Moran model with selection : Let there be N individuals of two types say Type I and Type II. Type I individuals have fitness level $\phi \in [1, \infty)$ and Type II individuals have fitness level 1. The population evolves as follows :
 - Given the population in generation *n*, an individual is chosen at random with probability proportional to its fitness level. The individual gives birth to an offspring of same type. The offspring replaces a randomly (i.e., uniformly at random) chosen individual from the exisiting population (i.e., the population at generation *n*), so that the total population remains constant.

Let X_n be the number of Type I individuals in generation n. What are the absorption states and the probability of absorption into these states of the HMC X_n ? (15)

6. Let P be the transition matrix of a HMC on E with π as its stationary distribution. Let $f: E \to \mathbb{R}$. Show that $VAR_{\pi}(P^t f) \leq \lambda_*^{2t} VAR_{\pi}(f)$. (15)

Recall that $\lambda_* := \max\{|\lambda| : \lambda \neq 1, \lambda \text{ is an eigenvalue of P}\},$ $\mathbb{E}_{\pi}(f) := \langle f, \mathbf{1} \rangle_{\pi}, VAR_{\pi}(f) := \mathbb{E}_{\pi}([f - \mathbb{E}_{\pi}(f)]^2).$

(**Hint:** Compute $E_{\pi}(P^t f)$ and use spectral decomposition for $P^t f$.)